
www.elsevier.com/locate/compositesb

Composites: Part B 38 (2007) 247–257
Progressive failure modeling of woven fabric composite materials
using multicontinuum theory

Christopher T. Key a,*, Shane C. Schumacher b,1, Andrew C. Hansen b

a System Engineering Group, Applied Mechanics Department, Anteon Corporation, 240 Oral School Road, Suite 105, Mystic, CT 06355-1208, USA
b Department of Mechanical Engineering, University of Wyoming, P.O. Box 3295, University Station, Laramie, WY 82071, USA

Received 6 June 2005; accepted 11 March 2006
Available online 5 May 2006
Abstract

Failure of composite materials often results from damage accumulation in the individual constituents (fiber and matrix) of the com-
posite. At times, damage may even be limited to a single constituent. The ability to accurately predict not only ultimate strength values
but also intermediate constituent level failures is crucial to the success of introducing composite materials into demanding structural
applications.

In this paper, we develop two progressive failure models for the analysis of a plain weave composite material. The fo.rmulations are
based on treating the weave as consisting of separate but linked continua representing the warp fiber bundles, fill fiber bundles, and pure
matrix pockets. Retaining constituent identities allows one to access constituent (phase averaged) stress fields that are used in conjunc-
tion with both a stress based and damage based failure criterion to construct a nonlinear progressive failure algorithm for the woven
fabric composite material. The MCT decomposition and the nonlinear progressive failure algorithm are incorporated within the frame-
work of a traditional finite element analysis.

The constituent based progressive failure algorithm combined with both the stress based and damage based failure criteria are com-
pared against experimental data for a plain weave, woven fabric composite under various loading conditions. The analytical results from
the damage based approach show a marked improvement over the stress based predictions and are in excellent agreement with the exper-
imental data.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The continually expanding use of composite materials in
large structural applications places a premium on under-
standing their survivability. An essential aspect of modeling
survivability is the ability to quantify damage and its effect
on structural performance prior to ultimate failure. Damage
in a composite often manifests itself in the form of submi-
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crocrack accumulation occurring in the matrix constituent.
An example of intermediate damage in a plain weave glass–
fabric composite is shown in Fig. 1. The milky white areas
are a clear indicator of matrix damage occurring in the fiber
bundles running transverse to the loading direction.

The situation where damage initiates in a constituent of a
composite prior to catastrophic failure is common. From a
modeling perspective, it is extremely desirable to quantify
the extent of constituent damage and its effect on structural
performance in the course of a traditional structural analy-
sis. By traditional analysis, we mean a standard nonlinear
structural code capable of modeling progressive damage
without having to rely on micromechanical models during
the course of an analysis. The macro–micro approach is
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Fig. 2. Open, plain weave microstructure.

Fig. 1. Photograph of woven fabric uniaxial tension specimen.
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not only undesirable from the standpoint of the amount of
information generated; it is also numerically untenable for
any meaningful large scale structural analysis. Thus the
analyst is confronted with the paradox of seeking constitu-
ent level information to model damage in a composite while
retaining the fundamental analysis at the structural level.

Multicontinuum theory (MCT) represents an attractive
compromise between standard large scale structural analy-
ses utilizing homogenized stress/strain fields and the
detailed macro/micro modeling approach. MCT relies on
the basic premise that a ‘continuum point’ for a composite
is composed of separate but linked continua comprised of
the individual constituents. Retaining the constituents’
identities allows one to access continuum (phase averaged)
constituent stress and strain fields. Knowledge of constitu-
ent stresses and strains allows one to implement continuum
damage models at the constituent level, thereby providing a
vehicle to simulate physically observed damage phenomena.

In this work, we utilize a previously developed three
constituent MCT decomposition algorithm in conjunction
with newly developed constituent level failure criteria for
plain weave fabric composites. An MCT analysis of woven
fabrics involves decomposing the microstructure of Fig. 2
into three constituents consisting of warp fiber bundles, fill
fiber bundles, and pure matrix pockets. Continuum stress/
strain fields are generated for the constituents at every
point in the structural analysis. In addition, continuum
matrix stress and strain fields within the warp and fill bun-
dles are accessed through a second MCT decomposition.
Two fundamentally different approaches to modeling
intermediate failure within a woven fabric composite mate-
rial are examined. The first approach examines constituent
stresses of the fiber bundles and develops stress-based failure
criteria for the fiber bundles. Both longitudinal (fiber) and
transverse (matrix) failure modes at the bundle level are
allowed. When failure is predicted in a fiber bundle, mechan-
ical properties are adjusted for the bundle and the composite
based on results from micromechanics. This binary
approach to constituent failure has been used with success
in the analysis of continuous fiber unidirectional composite
laminates [1–3]. Again, we emphasize the damaged compos-
ite properties may be computed independent of any struc-
tural analysis and are known a priori to any analysis.

A second approach to modeling progressive failure in a
woven fabric composite involves continuously degrading
the matrix properties within the fiber bundles based on
the amount of matrix damage resulting from submicrocrack
accumulation in the material. The damage model is then
related to material property degradation in the matrix, fiber
bundles, and the composite. The resulting damage analysis
produces a smooth macroscopic response for the composite
that reflects observed inelastic material behavior.

In what follows, we provide a comparison of both failure
models versus experimental data for various loading condi-
tions of a plain weave composite material system. The
results show that although the instantaneous degradation
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model works well under axial loading conditions, the con-
tinuous degradation model is superior and shows good
agreement with both axial and shear loading cases. This
increased correspondence is largely due to the inherent fact
that matrix failure within composite materials is not an
instantaneous phenomenon, but rather is generally caused
by an accumulation of damage over a large loading range.

2. Overview of multicontinuum theory

To date, the primary application of the MCT decompo-
sition algorithm in progressive failure analyses of compos-
ite materials has been limited to the two constituent case
involving continuous fiber unidirectional composite mate-
rials. For the case of a two-phase composite consisting of
constituents a and b there exists well known algebraic rela-
tions to decompose the composite stress/strain fields down
to the constituent level. The decomposition first appeared
in Hill [4] who developed the relations in an effort to esti-
mate composite material stiffness properties. In the case
of MCT, the relations are the same but the motivation is
entirely the opposite. That is, we utilize known composite
properties in conjunction with the decomposition of Hill
to determine constituent stress/strain fields. We have relied
on detailed finite element micromechanics models to com-
pute the composite material mechanical properties.

We begin by noting the average (homogenized) value
used to characterize the stress tensor at a ‘continuum point’
is derived by taking a volume average of all stresses in the
region

r� ¼
1

V

Z
D

r�ðxÞdV ; ð1Þ

where D is the region representing the continuum point.
In the case of a multicontinuum, we simply extend the

definition of the continuum stress in Eq. (1) down to the
constituent level. In particular, for a continuum point rep-
resenting a two-phase composite, volume averaged stresses
for constituents a and b may be expressed as

r�a
¼ 1

V a

Z
Da

r�ðxÞdV ; ð2Þ

and

r�b
¼ 1

V b

Z
Db

r�ðxÞdV ; ð3Þ

where

D ¼ Da [ Db:

The composite and constituent stress fields defined by
Eqs. (1)–(3) lead directly to

r� ¼ /ar�a
þ /br�b

; ð4Þ

where /a and /b are the volume fractions of constituents a
and b, respectively.

Likewise, for strains we have:

e ¼ /a e a þ /b e b: ð5Þ
� � �
Constitutive relations are required for the composite as
well as the constituents. Assuming elastic behavior for the
composite and constituents there follows

frg ¼ ½C�ðfeg � fe0gÞ; ð6Þ
frag ¼ ½Ca�ðfeag � fea0gÞ; ð7Þ
frbg ¼ ½Cb�ðfebg � feb0gÞ; ð8Þ
where [C], [Ca], and [Cb] represent material stiffness matri-
ces and {e0}, {ea0}, and {eb0} are stress-free (assumed here
to be thermal) strains. Let the thermal strains be defined as

fe0g ¼ hfgg; fea0g ¼ hfgag; feb0g ¼ hfgbg;

where {g} represents the coefficients of thermal expansion
and h is the relative temperature. Eqs. (4)–(8) can be com-
bined to yield an expression for the constituent strain {ea}
as a function of the composite strain given by

feag ¼ ð/a½1� þ /b½A�Þ
�1ðfeg � hfagÞ; ð9Þ

where

½A� ¼ �/a

/b

ð½C� � ½Cb�Þ�1ð½C� � ½Ca�Þ; ð10Þ

[1] is the identity matrix, and

fag ¼ ð½C� � ½Cb�Þ�1ð½C�fgg � /b½Cb�fgbg � /a½Ca�fgagÞ:
ð11Þ

Given {ea} from Eq. (9), Eq. (5) yields an expression for
{eb} as:

febg ¼
1

/b

ðfeg � /afeagÞ: ð12Þ

Eqs. (9) and (12) allow phase-averaged constituent
strains to be calculated from composite strains at any point
in a structural finite element model. Constituent stresses
can be calculated using Eqs. (7) and (8).

Any application of the above decomposition requires a
connection between composite properties and the proper-
ties of individual constituents. Typically [Ca], [Cb], {ga},
and {gb} are assumed known material properties of the
constituents. Composite terms, [C] and {g}, can be devel-
oped from finite element micromechanical models using
the constituent values as input.
3. Extension to a three-constituent multicontinuum theory

An MCT analysis of a woven fabric composite material
poses substantially greater difficulties than a unidirectional
composite in that there are now three constituents to deal
with. Specifically, we treat the weave as a three-constituent
composite composed of warp fiber bundles (a), fill fiber
bundles (b), and pure matrix pockets (c). The addition of
a third constituent results in an indeterminate set of equa-
tions based on the traditional decomposition put forth by
Hill. The extension of an MCT decomposition to woven
fabrics is summarized below and may be found in Key
et al. [5].
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Fig. 4. Three constituent tree structure.
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Fig. 3 illustrates a generic three-constituent continuum
point consisting of constituents a, b, and c. The introduc-
tion of the third constituent, c, to the continuum adds
the following constitutive relation to the previously
described system of equations:

frcg ¼ ½Cc�ðfecg � fec0gÞ: ð13Þ
With the addition of the third constituent, c, and noting

the previous development, we have introduced one addi-
tional equation, (13), and two unknowns given by {rc}
and {ec}. This leads to a set of equations that is
indeterminate.

To eliminate the indeterminacy introduced by a third
constituent, a treed approach is utilized as outlined in
Fig. 4. In this approach, we first combine the warp fiber
bundle (a) and fill fiber bundle (b) constituents into a single
constituent denoted by ab. This combination allows the
previously indeterminate set of equations to be reduced
to a set of branched two-constituent problems, each com-
posed of determinant sets of equations. The first branch
of the treed structure consists of constituents ab and c,
with unknowns {rab}, {eab}, {rc}, and {ec}. For this first
branch of the three-constituent theory, Eqs. (9)–(12) are
modified as

fecg ¼ ð/c½I � þ /ab½A�Þ
�1ðfeg � hfagÞ; ð14Þ

where

½A� ¼ �
/c

/ab

ð½C� � ½Cab�Þ�1ð½C� � ½Cc�Þ; ð15Þ

fag ¼ ð½C� � ½Cab�Þ�1ð½C�fgg�/ab½Cab�fgabg�/c½Cc�fgcgÞ;
ð16Þ

and

feabg ¼
1

/ab

ðfeg � /cfecgÞ: ð17Þ

The constitutive equation for the ab constituent assumes
the form:

frabg ¼ ½Cab�ðfeabg � feab0gÞ: ð18Þ
Fig. 3. Generic three constit
Once {rab} and {eab} are calculated in the first branch of
the theory, the ab constituent can then be viewed as the
composite for the second branch of the tree, where a and
b are its respective constituents. The fundamental strain
relations given in Eqs. (9)–(12) are again modified as

feag ¼ ð/a½I � þ /b½A�Þ
�1ðfeabg � hfagÞ; ð19Þ

where

½A� ¼ �/a

/b

ð½Cab� � ½Cb�Þ�1ð½Cab� � ½Ca�Þ; ð20Þ

fag ¼ ð½Cab� � ½Cb�Þ�1ð½Cab�fgabg � /b½Cb�fgbg
� /a½Ca�fgagÞ; ð21Þ

and

febg ¼
1

/b

ðfeabg � /afeagÞ: ð22Þ

A subtle but important point in Eqs. (19)–(22) is that the
volume fractions /a and /b represent the volume of con-
stituents a and b relative to the volume of the ab
constituent.

Any application of the proposed three-constituent
decomposition requires one to determine the material stiff-
ness matrix [Cab] as well as the coefficients of thermal
uent ‘continuum point’.
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expansion {gab}. To determine these material properties we
again rely on the finite element micromechanics model. A
judicious selection of mechanical load cases for the com-
posite allows one to induce specific stress states within
the ab constituent that lead to straightforward calculations
of the material properties. Once [Cab] is known, {gab} may
be determined by applying a thermal load to the microme-
chanics model. Upon volume averaging the appropriate
strain fields for the thermal load, Eq. (19) may be used to
determine the vector {a}. Substituting {a} into Eq. (21)
allows one to compute {gab} directly.

The geometry of a balanced plain weave composite pre-
sents some difficulties associated with the proposed three-
constituent decomposition outlined above. In particular,
singular matrices are encountered in the second decompo-
sition, thereby preventing required matrix inversions. The
traditional decomposition is altered by condensing out
appropriate stress/strain terms that produce the singular
matrices. The reader is referred to Key et al. [5] for details.

Finally, when developing a continuum damage model
for the weave we note that damage in the warp and fill fiber
bundles is assumed to occur in the matrix constituent
within the bundle. Accessing constituent information
within a fiber bundle requires one to essentially nest the
MCT decompositions. Hence, the three-constituent MCT
decomposition is executed first to generate stress/strain
fields in the fiber bundles. The two constituent MCT
decomposition is then executed to determine the matrix
stress and strain fields within a fiber bundle. Finally, given
access to the matrix stress/strain fields within a fiber bundle
in the weave, we develop a continuum damage model in an
effort to predict ultimate composite failure while capturing
the inelastic stress–strain response.

4. Failure criteria and material degradation

In this section, we develop two separate progressive fail-
ure models for a plain weave composite. Progressive failure
analyses using constituent based failure criteria have been
previously implemented for unidirectional composite mate-
rials with good success [1–3]. However, we emphasize that
MCT is not a failure criterion. Rather, it is a mechanism to
introduce constituent level information into a failure anal-
ysis. Indeed, any user of MCT may implement a failure cri-
terion of their own choosing.

4.1. Stress based failure with instantaneous material

property degradation

The first modeling approach used to predict progressive
failure within the woven fabric material is a stress based
criterion with instantaneous (binary) degradation.
Although, the bundles within the woven fabric microstruc-
ture have some degree of undulation to them, for this anal-
ysis we assume that the undulation is small and therefore
we can assume that the bundles may be treated locally as
being transversely isotropic. Noting this we assume a sim-
plified quadratic stress interactive failure criteria for the
bundles based on the work of Mayes [1] given by:

K1I2
1 þ K2I2

2 þ K3I3 þ K4I4 ¼ 1: ð23Þ
The transversely isotropic invariants in Eq. (23) may be

expressed as:

I1 ¼ r11;

I2 ¼ r22 þ r33;

I3 ¼ r2
22 þ r2

33 þ 2r2
23;

I4 ¼ r2
12 þ r2

13;

I5 ¼ r22r2
12 þ r33r2

13 þ 2r12r13r23;

ð24Þ

where the x1 direction represents the fiber direction. The
failure criterion of Eq. (23) is applied to both the warp
and fill fiber bundles in the woven fabric microstructure
to determine the constituent mode or modes of failure
within each bundle.

Following the reasoning of Mayes [1], we make the fol-
lowing observations about failure within the fiber bundles.
Longitudinal fiber bundle failure is controlled by fiber fail-
ure within the bundle, while transverse failure is controlled
by matrix failure within the bundle. Therefore, we define a
longitudinal (fiber) failure criterion and a transverse
(matrix) failure criterion for each of the fiber bundles as

�K1f I2
1f þ K4f I4f ¼ 1; ð25Þ

and

�K2mI2
2m þ K3mI3m þ K4mI4m ¼ 1: ð26Þ

We reiterate that for this stress based instantaneous deg-
radation modeling approach, the fiber bundles are treated
as individual constituents within the woven fabric micro-
structure. Therefore, the coefficients and invariants given
in Eqs. (24)–(26) are properties of the unidirectional fiber
bundles.

In direct correlation with the derivations of Mayes, the
coefficients for the longitudinal (fiber) failure criteria of
Eq. (25) are given by

�KL
1 ¼

1

ð�S11Þ2
ð27Þ

and

KL
4 ¼

1

ðSL
12Þ

2
: ð28Þ

Likewise, the coefficients for the transverse (matrix)
failure criteria of Eq. (26) are given by

�KT
2 ¼

1

ð�S22Þ
1� ð

�S22Þ2

2ðS23Þ2

 !
; ð29Þ

KT
3 ¼

1

2ðS23Þ2
; ð30Þ

and

KT
4 ¼

1

ðST
12Þ

2
: ð31Þ
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The in-plane shear coefficient for longitudinal (fiber)
failure ðSL

12Þ given in Eq. (28) differs from the coefficient
for transverse (matrix) failure ðST

12Þ given in Eq. (31). These
different shear strength coefficients differentiate between
longitudinal (fiber) bundle failure caused by shear stresses
and transverse (matrix) bundle failure caused by shear
stresses.

4.2. Damage based failure with continuous material

property degradation

In a second method of modeling the failure response of
woven fabric composites we introduce a continuous dam-
age approach which utilizes a damage evolution for the
matrix constituent within a bundle. The damage evolution
is motivated by a one-dimensional damage model that
exhibits the characteristics of stress and time dependence
based on the kinetic theory of fracture.

Kinetic theory is centered around bond rupture at the
molecular level in a material. Bond rupture occurs at the
molecular level and manifests itself in the form of submi-
crocracks. As loading continues, these microcracks coa-
lesce resulting in macroscopic failure. The evolution of
microcracks under uniaxial stress is represented by the fol-
lowing differential equation [6]

dNðtÞ
dt
¼ ðNT � NðtÞÞKb; ð32Þ

where N is the number of submicrocracks, NT is a constant
representing local ‘hot spots’ such as amorphous–crystal-
line interfaces, etc. and Kb is the reaction rate for material
breakage given by:

Kb ¼
1

s0

eð�ðU�crÞ=kTAÞ: ð33Þ

In Eq. (33), s0 is the period of characteristic oscillation
of atoms in a solid, k is Boltzmann’s constant, A is Avoga-
dro’s number, T is the temperature, and U and c are mate-
rial constants.

Dividing Eq. (32) by Nr, where Nr represents the number
of submicrocracks at rupture, the degree of damage can be
represented on a scale of 0 < n < 1, where n = 0 represents
no damage and n = 1 represents macroscopic material fail-
ure. The resulting differential equation representing the
degree of damage accumulation within a material is given
by:

dnðtÞ
dt
¼ ðn0 � nðtÞÞKb: ð34Þ

The extension of the one-dimensional kinetic theory
damage model to three-dimensional stress states is achieved
by introducing a second order continuum damage tensor,
nij, given by:

nij ¼
n11 n12 n13

n22 n23

sym n33

2
64

3
75: ð35Þ
The damage tensor components are assumed to satisfy
the evolution equations given by

dnijðtÞ
dt

¼ ðn0 � nijðtÞÞKijb; ð36Þ

where

Kijb ¼
1

s0

eð�ðR�brm
ij ÞÞ: ð37Þ

In Eq. (37) R and b represent material constants.
In the above, we are associating damage in the compos-

ite with the corresponding stress component seen by the
matrix material within each bundle. As a result, the dam-
age tensor is symmetric due to the symmetry of the stress
tensor. Within a finite element program, the degree of dam-
age is calculated at every Gauss point. Once the degree of
damage is known, the damage accumulation is used to con-
trol the degradation of elastic material properties.

4.3. Unidirectional composite

In order to develop a damage based failure criterion for
the woven fabric microstructure it is first necessary to
develop the damage model for a unidirectional composite
due to the fact that the fiber bundles within the woven fab-
ric are treated as unidirectional materials. For the trans-
versely isotropic unidirectional composite, we assume
that matrix damage accumulates in such a way that the
composite and in situ matrix both remain transversely iso-
tropic. Therefore, the damage is expressed in terms of the
transverse isotropic damage invariants given by:

I1 ¼ n11;

I2 ¼ n22 þ n33;

I3 ¼ n2
22 þ n2

33 þ 2n2
23;

I4 ¼ n2
12 þ n2

13;

I5 ¼ n22n2
12 þ n33n2

13 þ 2n12n13n23:

ð38Þ

As damage in the matrix material accumulates, the
matrix properties are degraded based on the damage invar-
iants of Eq. (38) to reflect reduced stiffness. The develop-
ment of the material property degradation models are
described in detail by Schumacher [7]. For brevity, only
the functional forms of the degradation models are pre-
sented here. The form of the material degradation for Gm

12

and Gm
13 are a function of I4 and are given by

Gm0

12 ¼ Gm
12ð1�

ffiffiffiffi
I4

p
Þ; ð39Þ

and

Gm0

13 ¼ Gm
13ð1�

ffiffiffiffi
I4

p
Þ; ð40Þ

where the primed ( 0) value denotes the degraded stiffness.
Motivation for the degradation models of Eqs. (39) and

(40) is provided by recalling the fourth invariant from Eq.
(38) which is a function of n12 and n13. Hence, for the case
of a longitudinal shear test where r13 6¼ 0, Eq. (40) becomes:

Gm0

13 ¼ Gm
13ð1� n13Þ: ð41Þ
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Notice when n13 = 0, the material is undamaged,
whereas n13 = 1 would effectively zero the shear modulus.

Now consider the damage components n22 and n33

caused by transverse tensile stresses. The damage accumu-
lation is assumed to affect the matrix elastic properties Em

22,
Em

33 and, in addition, Gm
23 by transverse isotropy. Similarly,

in the case of transverse shear damage, n23 is assumed to
affect the matrix elastic properties Gm

23, Em
22, and Em

33.
The assumed form of material degradation of Em

22, Em
33,

and Gm
23 is shown below where the material degradation is

only dependent upon I3, i.e.

Em0

22 ¼ Em
22 1�

ffiffiffiffi
I3

2

r !
: ð42Þ

Em0

33 ¼ Em
33 1�

ffiffiffiffi
I3

2

r !
: ð43Þ

and

Gm0

23 ¼ Gm
23 1�

ffiffiffiffi
I3

2

r !
: ð44Þ

Finally it is noted that the composite stiffness properties
must be degraded in a manner consistent with the constitu-
ents. A detailed discussion of the functional degradation of
the composite properties is provided by Schumacher [7].
However it is worth noting that, under a three-dimensional
state of stress, the transverse tension and transverse shear
composite elastic material properties are degraded simulta-
neously, thereby preserving transverse isotropy while tak-
ing into account the directional damage dependence.

4.4. Woven fabric composites

The previous damage model for unidirectional compos-
ites represents a critical component of the damage model
for woven fabrics. Specifically, damage in the weave is
attributed to matrix cracking occurring within the fiber
bundles. Within the woven fabric composite, the fiber bun-
dles are treated as unidirectional subcomposites.

The previously outlined approach requires the degree of
matrix damage within the fill and warp bundles be deter-
Open Weave C

αβ Com

α Fill Bundle

Fiber

Matrix 

Fig. 5. Damage decomposition s
mined. This task requires two additional MCT stress
decomposition branches to be added to the open weave
analysis, as shown in Fig. 5. Finally, a functional relation-
ship, similar to that given previously for a unidirectional
composite, between the fiber bundle damage and the com-
posite properties must be generated. Again, the reader is
referenced to Schumacher [7] for a detail discussion of
the functional degradation schemes.

A final piece of the damage based modeling approach is
the development of a macroscopic failure criterion. The
damage interactive failure criterion developed is similar
to the stress interactive failure criterion presented previ-
ously in the stress based instantaneous degradation model.
Specifically, the matrix failure criterion is given by

Am
2 ðIm

2 Þ
2 þ Am

3 Im
3 þ Am

4 Im
4 ¼ 1; ð45Þ

where the invariants are matrix damage invariants for the
matrix constituent within the fiber bundles.

In Eq. (45), the coefficients Am
i are determined from uni-

directional composite experimental stress–strain behavior
in a manner identical to that presented by Mayes. There-
fore, a transverse tension loading case is used to determine
the coefficient Am

2 , as:

Am
2 ¼

1

ðF 22m
22 þ F 22m

33 Þ
2

1� ðF
22m
22 Þ

2 þ ðF 22m
33 Þ

2

2ðF m
23Þ

2

 !
: ð46Þ

The coefficients F iim
jj represent the critical values of dam-

age as determined from stress–strain experimental data.
The double subscript notation is necessary to identify the
damage term and the loading direction. In particular,
F 22m

33 represents damage in the 33 direction as the result
of a stress in the 22 direction. Such notation is necessary
because the stress state in the matrix material is fully
three-dimensional under uniaxial composite stress. For
the case of out-of-plane shear (transverse shear), the critical
coefficient Am

3 is given by:

Am
3 ¼

1

2ðF m
23Þ

2
: ð47Þ
omposite 

bined γ Matrix

β Warp Bundle

Fiber

Matrix 

tructure for a woven fabric.



Table 3
Damage parameters for damaged based MCT

Normal
component

Shear
component

Initial damage, n0 1.58 1.58
Activation energy, U (J/mol) 1.17 · 105 8.48 · 104

Material constant, c (MPa/mol) 1.0 · 10�3 1.0 · 10�4

s0 (s) 1.0 · 10�13 1.0 · 10�13

Ultimate damage (F) 0.216 0.86
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In the case of in-plane shear (longitudinal shear), the
calculation of the critical coefficient, Am

4 is given by:

Am
4 ¼

1

ðF m
12Þ

2
: ð48Þ

Once a damage based failure has occurred, all matrix
properties with a fiber bundle are set to near zero values
at the failed Gauss points.

The final piece of the damage based failure criterion is
that the fiber failure criterion for this approach is identical
to that for the stress based approach presented previously.
This is due to the fact that although the matrix constituent
commonly accumulates damage in the form of microcracks
in a composite material, the fibers in these systems are
assumed to fail instantaneously.

5. Comparison of analysis versus experiment

In this section, both the stress based instantaneous deg-
radation and the damage based continuous degradation
models are compared against experimental data for a plain
weave composite material subjected to uniaxial tension and
in-plane shear. Stress–strain curves and a biaxial failure
envelope are used to qualify the ability of MCT to predict
laminate level behavior for a woven fabric composite. The
material system used for this study was an 18 oz. E-glass/
vinylester (Dow 8084) system with an assumed fiber bundle
volume fraction of 75% and an overall fiber volume frac-
tion of 50%. The specimens for the experimental testing
were fabricated by Seemann Composites, Inc., with their
patented SCRIMP process. Elastic constants and failure
parameters related to both modeling approaches are given
in Tables 1–3.

5.1. Uniaxial tension

The first loading condition examined for the validation
procedure was uniaxial tension of a [06]f laminate. Fig. 6
shows the experimental stress–strain response versus the
MCT predicted stress–strain responses for both the stress
based and damage based modeling approaches. This figure
highlights the damage induced nonlinear behavior com-
Table 1
Composite and fiber bundle material properties for E-glass/8084 vinylester

E11 (GPa) E22 (GPa) E33 (GPa) t12

Composite 26.9 26.9 14.5 0.138
Fiber bundles 55.3 22.6 22.6 0.232

Fiber bundle properties are given in the local coordinate system (fiber directio

Table 2
Fiber bundle ultimate strengths

+S11 (MPa) �S11 (MPa) +S22

Fiber bundle ultimate strengths 1135 �1054 180.0
monly seen in composite materials and the ability of the
MCT constituent level progressive failure algorithm to cap-
ture these nonlinearities.

For both of the MCT modeling approaches, failure ini-
tiates as matrix failure within the fiber bundles that are ori-
ented transverse (warp bundle) to the loading direction.
This initial failure point is labeled point A in both of the
predicted stress–strain responses. The intermediate failure
state of matrix failure within a fiber bundle (point A) is
commonly observed during experimental testing. Fig. 1
illustrates this failure condition, where the milky regions
seen in the dog-bone specimen are regions of matrix failure
within the transverse fiber bundles.

As loading is increased in the analyses, the damage
based MCT approach experiences matrix failure within
the longitudinal fiber bundles (fill bundles) at point B
before catastrophic specimen failure. This is in direct con-
trast to the stress based MCT approach, where matrix fail-
ure within the longitudinal fiber bundles (fill bundles) does
not occur. For both methods, catastrophic failure results
from a tensile fiber failure in the longitudinal bundles at
point C. Both methods predict final failure within 3% of
the experimental value.

5.2. In-plane shear

The second loading condition studied was in-plane shear
of a [06]f laminate. To achieve this loading condition, an
Iosipescu shear test was utilized [8]. Fig. 7 shows the exper-
imental stress–strain response along with the MCT pre-
dicted stress–strain responses. In this figure, the stress
based MCT approach predicts a linear stress–strain
t13 t23 G12 (GPa) G13 (GPa) G23 (GPa)

0.0278 0.0278 5.54 7.93 7.93
0.238 0.286 9.19 9.36 8.80

n: x1).

(MPa) �S22 (MPa) SL
12 (MPa) ST

12 (MPa) S23 (MPa)

�160.1 102.9 50.69 210.0
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response while the damage based modeling captures the
nonlinear behavior of the material. The ability of the dam-
age based MCT approach to capture the highly nonlinear
behavior of composite materials under shear loading con-
ditions is a vital capability for an analysis tool. For the
damage based MCT, the predicted ultimate strength is
within 2% of the experimental ultimate value while the
stress based approach under predicts the stress and strain
by 22 and 71%, respectively. Both catastrophic failure
points for the MCT models are caused by failure of the
matrix constituent within both the fill and warp bundles
at simultaneous instances.

5.3. Biaxial loading

In further studying the MCT failure prediction with the
stress based approach, a two-dimensional failure envelope
was generated from biaxial tests on thickness-tapered cru-
ciform specimens with a layup sequence of [0/90]s. The
thickness-tapered cruciform specimens were tested using a
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triaxial test apparatus [9–11]. The triaxial test apparatus is
capable of generating any combination of tensile or com-
pressive stresses in r1:r2 stress space. All of the tests for this
work were load controlled with a minimum of three tests
ran for each of the following applied x/y load ratios: 1/1,
2/1, 1/0, 2/�1, 1/�1, 1/�2, �1/0, �1/�2, and �1/�1.

Fig. 8 presents both the experimental and MCT pre-
dicted biaxial failure envelopes for the woven fabric lami-
nate [10]. The analytical MCT predictions for ultimate
strength are in excellent agreement with the experimentally
determined data.

6. Summary

The ability to access woven fabric composite material
failure at the constituent level opens a new window of
understanding related to the response and behavior of
these materials. Most often failure in these materials is
not caused by one single catastrophic event, but rather
the accumulation of multiple intermediate failure events.
In this work, two separate failure criteria and degradation
methods were studied and compared against experimental
data. The stress based instantaneous degradation model
does a good job of predicting the stress–strain response
for uniaxial tension. However, it does a poor job under
in-plane shear where a large amount of damage induced
nonlinearity is seen. In contrast, the damage based MCT
approach does a good job of predicting the damage
induced nonlinear stress–strain response for both the nor-
mal and shear loading. This improvement is largely due
to the continuous degradation scheme used for the matrix
stiffness properties within both the fill and warp fiber
bundles.

The authors are pleased with the results of this work,
especially when considering all of the complexities such
as microstructure geometry, material constants, etc. that
are associated with the modeling woven fabric composites.
Finally, the work contained herein is not limited in applica-
tion to plain weave composites and can be expanded to
handle various other woven fabric architectures such as
satin weaves, harness weaves, etc.
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